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Abstract—Building end-to-end speech synthesisers
for Indian languages is challenging, given the lack of ad-
equate clean training data and multiple grapheme rep-
resentations across languages. This work explores the
importance of training multilingual and multi-speaker
text-to-speech (TTS) systems based on language fam-
ilies. The objective is to exploit the phonotactic prop-

erties of language families, where small amounts of

accurately transcribed data across languages can be
pooled together to train TTS systems. These systems
can then be adapted to new languages belonging to the
same family in extremely low-resource scenarios.

TTS systems are trained separately for Indo-
Aryan and Dravidian language families, and their
performance is compared to that of a combined
Indo-Aryan+Dravidian voice. We also investigate the
amount of training data required for a language in a
multilingual setting. Same-family and cross-family syn-
thesis and adaptation to unseen languages are analysed.
The analyses show that language family-wise training
of Indic systems is the way forward for the Indian
subcontinent, where a large number of languages are
spoken.

Index Terms—end-to-end speech synthesis, Indian
languages, language families, low-resource

I. INTRODUCTION

ITH the advent of neural network-based end-to-

end (E2E) approaches, training a text-to-speech
(TTS) synthesiser has become easier when a large amount
of data is available for a language [1], [2]. Systems can be
trained quickly using accurate <text, audio> pairs aligned
at the sentence level. However, building E2E synthesisers
for Indian languages is still a challenge due to the following
reasons:

1) India has a wide linguistic diversity, with about 1369
rationalised languages and dialects [3]. Of these, 121
languages are spoken by more than 10,000 people
in each language. There are 23 official languages,
including English. Building a TTS synthesiser for
each language from scratch is difficult, given so many
languages.

2) There is a lack of accurately transcribed data for
training, which is crucial for a TTS system. This is a
bottleneck, especially in the E2E framework, which
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requires tens of hours of training data to produce
high-quality speech [4].

3) There are about 13 scripts that are used for Indian
languages. This leads to a significant increase in
vocabulary size in a multilingual context.

Most Indian languages can be broadly classified into
two language families—Indo-Aryan and Dravidian. In [5],
datasets of languages belonging to the same language
family were combined for training. This kind of pooling
collectively increases the amount of data, with the added
advantage of capturing a wide variety of contexts. A multi-
language character map (MLCM) [6] and a common label
set (CLS) [7] for Indian languages were developed to
reduce the vocabulary size. Speaker embedding in terms
of x-vector [8], [9] was also included during training,
primarily for speaker selection during synthesis. Native
and cross-lingual syntheses were performed. These systems
were then adapted to limited data of a new speaker to
synthesise the audio in that speaker’s voice.

The current work extensively studies the role of lan-
guage families in training Indic systems, especially when
resources are scarce. Most studies in the literature use a
large amount of training data (ranging from 25-1250 hours
for monolingual speech synthesis), or at least a pre-trained
model that has been trained with a large amount of data.
In the current work, we train an initial TTS system in
a low-resource scenario (in terms of the amount of clean
data and speaker coverage). We use a maximum of 20
hours of multispeaker multilingual data (one speaker for
each language). The experiments performed in this work
attempt to answer the following questions:

o Is it possible to achieve a good-quality TTS system
in such a scenario?

o Can we reduce the compute power as a consequence
of using less data without significant degradation in
speech quality?

o Suppose we have to train a TTS system for a new lan-
guage with limited data; what are the best strategies
that can be adopted for system building?

The studies in this work attempt to answer these questions
by focusing on the role of language families in training TTS
systems. We build upon the work in [5] and systematically
analyse different scenarios. The novelty of this work is
highlighted here:

e This work is one of the first attempts to study the
importance of language families in the context of
speech synthesis.



o We compare language family-specific Indo-Aryan (TA)
and Dravidian (Dr) models with a combined Indo-
Aryan+Dravidian (IA4Dr) system.

e We also assess the performance of models trained in
data-stressed situations. We reduce the training data
used per language in the multilingual voice.

o Zero-shot synthesis: We study the effect of same lan-
guage family and cross-family synthesis for an unseen
language.

e Given a limited amount of data for an unseen lan-
guage, we study different scenarios of adaptation—
same family, cross-family and IA+Dr adaptation.

o We highlight the differences between Indo-Aryan and
Dravidian languages and quantify the differences by
phonotactic' analysis using byte-pair encoding (BPE)
[10], [11] and language modelling.

In this work, multilingual and multispeaker voices (re-
ferred to as generic voices) are trained using single-speaker
data per language. Most of the experiments do not use
speaker embeddings as we do not aim to synthesise speech
in a particular speaker’s voice. The primary objective is to
preserve language characteristics in terms of phonotactics
rather than speaker characteristics. For completeness, the
results of systems trained with speaker embeddings are
presented in the supplementary material (Sections S1,
S2 and S4). The performance of systems is quantified
using objective and subjective measures and supported by
qualitative analysis in terms of informal listening tests.

The rest of the paper is organised as follows. Section II
highlights the motivation to train systems based on lan-
guage families. The literature on related work is discussed
in Section III. Sections IV and V present the experiments
and analysis of the various TTS systems. Observations are
summarised in Section VI, and the phonotactic analyses of
languages is presented. The work is concluded in Section
VII.

II. MOTIVATION

The written scripts of Indian languages can be traced
to the Brahmi script. Although different Indian languages
may have different grapheme representations, they share
a common set of sounds. Most languages have about 11—
15 vowels and 33-35 consonants, except Tamil, which has
representations for only 23 consonants. Despite a common
set of phones, phonotactics across languages varies. Indian
languages have simple phone clusters and are akshara-
based [12]. In comparison, English has complex phone
clusters such as twelfth and strength. Phone clusters such
as sr and ph (aspirated p), rarely occur in English. Sim-
ilarly, phone clusters such as ion and ous are quite rare
in Indian languages [13]. Unlike English, Indian languages
are replete with geminates [14].

Phonotactic differences are especially evident across
language families. Most Indo-Aryan languages are char-
acterised by schwa deletion, which is the absence of the

1Phonotactics is the sequence of phones that is allowed in a
language.

inherent short vowel a [15]. Agglutination, which refers
to the phenomenon of combining multiple words, is very
common in Dravidian languages [16]. Language-specific
phones also contribute to these phonotactic differences.
Dravidian languages have many liquids and distinguish
between alveolar, dental and retroflex places of articula-
tion. Dravidian languages are also characterised by their
lack of distinction between aspirated and unaspirated stop
consonants. Telugu, Malayalam and Kannada scripts have
representations for aspirated stop consonants primarily to
accommodate the use of borrowed words from Sanskrit.
Motivated by these differences, this work explores the ef-
fectiveness of training systems based on language families.

III. RELATED WORK

There have been previous attempts to train generic
voice models from different perspectives—polyglot synthe-
sis [17]-[28], code-mixing? [23], [26], [29]-[36], cross-lingual
voice conversion [37], [38], and data augmentation [21],
[22], [25], [26], [28], [39]-][44]. Polyglot synthesis aims to
synthesise texts of multiple languages in the voice of a
single speaker. Cross-lingual voice conversion deals with
synthesising the linguistic content of a source speaker in
the voice of a target speaker. Data augmentation aims to
increase the collective data for training by pooling data
across languages. The perspective of the current work can
be considered to be but not limited to a combination
of polyglot synthesis (using multispeaker data) and data
augmentation. As a consequence of multilingual training
followed by adaptation, the work can be extended to other
perspectives.

An effective solution to multilingual training is to collect
data of a single person speaking multiple languages, as
performed in [17], [22], [29], [31], [37], [45]-[48]. This is
especially essential in the unit selection synthesis (USS)
paradigm [17], [29], where waveforms are directly con-
catenated. Collecting single-speaker multilingual speech
data may not always be feasible, and extension to new
languages becomes restrictive. Most studies address this
bottleneck by combining several monolingual databases
recorded by different speakers. One study attempts to
generate a polyglot database in a target voice by cross-
lingual voice conversion [23]. Similarly, in [36], bilingual
data is generated using voice conversion and the training
data is augmented to build a TTS system capable of code-
mixing. [39] trains a USS synthesiser utilising a mixture of
monolingual corpora and then transforms the synthesised
utterances to a target voice. A popular approach in the
hidden Markov model (HMM) based TTS paradigm is
to map/share attributes across languages, such as phone
mapping [18]—[20], [31], and sharing of HMM states [30].
In [21], speaker and language-specific characteristics are
modelled using separate transforms.

2Code-switching is the alternation between multiple languages
in a single conversation. Code-switching is an inter-sentential phe-
nomenon, while code-mixing is more of an intra-sentential phe-
nomenon.



In the domain of neural networks, speaker-independent
and language-independent layers of a deep neural network
(DNN) are shared. These layers serve as a bridge between
speaker-specific and language-specific layers [22]. Simi-
larly, [40] trains a multilingual bidirectional long short-
term memory (BLSTM) neural network in which the
hidden layers across different languages are shared. In
contrast, the input and output layers are considered to
be language-dependent. [41] trains an LSTM-RNN (re-
current neural network) based system, wherein language
and speaker variations are modelled using cluster adaptive
training and speaker-dependent layers, respectively. [43]
proposes a multilingual phoneme inventory and trains a
multilingual and multispeaker LSTM-RNN model.

Recent literature on multilingual training is mainly in
the E2E framework. The text processing module or the
text encoder is modified to enable multilingual training.
[32] explores two types of text encoders—(a) a single
multilingual encoder with language embedding and (b) a
separate encoder for each language. In [49], the text is
represented as a sequence of bytes, thus rendering the text
encoder language-independent. In a few experiments, in-
ternational phonetic alphabet (IPA) based features, more
widely known as phonological features, are used in multi-
lingual training [27], [35], [50].

As TTS systems are trained in multispeaker and mul-
tilingual settings, additional embeddings such as speaker
and language embeddings are included during training
[24], [28], [33]. This enables the synthesis of any language
in any speaker’s voice. To improve cross-lingual synthesis,
a popular technique is to disentangle speaker information
and linguistic content [26], [51]-[53]. In [26] and [51], an
adversarial loss is included to suppress speaker-dependent
information. [52] uses domain adaptation objective to ob-
tain language-independent speaker embedding and inter-
speaker perceptual similarity to train a speaker encoder.
[53] attempts to disentangle speaker and spoken content
by minimizing the mutual information between them.
In this context, [38] summarises various techniques used
for the cross-lingual voice conversion task in the voice
conversion challenge 2020.

On average, multilingual TTS systems are comparable
to single/multi-speaker monolingual systems for synthe-
sising text in the same language. Multilingual systems are
also extended to extrinsic languages, as shown in [20], [42],
[43], [46]. Further, multilingual systems are adapted to a
(new) language or speaker [18]-[21], [23], [25], [28], [33],
[41], [46], [50], [54]-[58].

Experiments in [51] and [59] aim to remove foreign
accents in cross-lingual synthesis. However, a non-native
accent need not be an undesirable entity [19] and can be
considered to mimic the real-world scenario. Hence, no
attempts have been made to remove the accent in the
synthesised speech in the current work.

In the context of multilingual E2E training for Indian
languages, [54] trains convolutional attention-based TTS
with language, speaker and gender embeddings. In [56],
pre-training strategies are explored between source and

target languages, which enable the training of multilin-
gual voices with a reduced amount of data. In [58], byte
inputs are mapped to spectrograms and experiments are
performed with 40+ languages, including Hindi, Tamil and
Telugu.

Most of the above literature uses a huge amount of
data (ranging from tens to hundreds of hours) for training
generic voices. For example, [58] uses close to 900 hours
for training generic systems. In the current work, we use
a maximum of 20 hours of accurately transcribed data
for training an initial generic voice. Most importantly,
in contrast to the above-presented literature, we explore
the role of language families in system training. Although
the TTS systems in [5] are trained based on language
families, the relevance of training them in this manner is
not explored. A recent study [60] observes that language
family classification may not be an effective basis for
choosing (source) languages for training a generic TTS.
However, our own experiences with multilingual TTS sys-
tems and observations in [18] find that the intelligibility
of synthesised speech depends on the similarity between
any target language and source language(s).

During the review process of this paper, a recent and
parallel work has performed extensive studies on how
various factors in training affect polyglot synthesis quality
[61]. Specifically, the focus is on factors such as gender,
speaker composition, and language family affiliation. Anal-
ysis of unseen language synthesis is performed by adding
language variants belonging to the same and different lan-
guage families in the training data. The paper concludes
that adding languages to the training data closer to a
target language is better than adding a dissimilar language
(similar to observations drawn in [18]).

Another motivation for undertaking this study is the
lack of comprehensive literature on building E2E TTS
systems for Indian languages. Although there is an impe-
tus in building E2E synthesis systems, with new architec-
tures and techniques being developed, there is very little
work on addressing the challenges specific to the Indian
context. There is a need to evaluate the problem from a
low-resource scenario and a multilingual perspective. The
authors hope this study will bridge the gap and help future
researchers.

IV. TRAINING INDIC TTS SYNTHESISERS

This section describes the modules in building generic
TTS systems and their adaptation to new speakers (and
languages). Details about the datasets, the representation
of multiple scripts and the E2E training of systems are
presented.

A. Datasets

The datasets used in this work are part of the Indic
TTS database [62]3. Each dataset consists of speech wave-
forms and the corresponding text in UTF-8. Details of

3Link to the IndicTTS
www.iitm.ac.in/donlab/tts/database.php

database:
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TABLE I: Details of the datasets used. Examples of phone-based (CLS) and character-based (MLCM) representations
are given. “F” and “M” refer to female and male datasets, respectively. Unseen languages are not used for training

generic systems.

Language L Script E 1 CLS Characters Gender
family anguage crip xamp.e representation (MLCM tokens) (duration - hrs)
Bengali Bangla BN b-A-g-1-A ?4é_9_g_g2_9; - F(5), M(5)
o1 . . g-f-F-m-g-f
Indo-Aryan Hindi Devanagari fa=t h-i-n-d-I (59-10-42-68-40-11) F(5), M(5)
Odia Odia a6al 0-%-i- ‘(32'1_@3;)_‘:1‘6_3‘) F(5), M(5)
Rajasthani Devanagari ST r—A-j-a-s—9-A-n-I EE:O—E;—E’E—&;(;S—E’;;)Z—_ZLQEI_I:)T - F(5), M(5)
Gujarati (unseen) Gujarati axud] g-u-j-r-A-t-I zl2j5—f2j3t\(5)—_58—5—3§|3j1(11)_ Bl F(0.5), M(0.5)
Kannada Kannada LERS] k-a-n-n-a-S-a ?2_3?4_222_213_35) F(5), M(5)
Dravidian Malayalam Malayalam 28180 m-a-l-a-y-A-g-a-q ?4_815—(4!2)9:9—;?;—63)_ o F(5), M(5)
Telugu Telugu BeolH t-e-l-u-g-u ?3;:56__502__13_32;_){1;){:;‘) F(5), M(5)
Tamil (unseen) Tamil s t-a-m-i-Z ?378?48—{11(5—%4—68) F(0.5), M(0.5)

the datasets are given in Table I. Totally 9 languages
are considered—>5 belonging to the Indo-Aryan language
family (Bengali, Gujarati, Hindi, Odia, Rajasthani), and
4 belonging to the Dravidian language family (Kannada,
Malayalam. Tamil, Telugu). Each language has its own
unique script, except Hindi and Rajasthani, which share
the Devanagari script. It is to be noted that only 2 speak-
ers (1 female and 1 male) are considered in each language.
Gujarati and Tamil are considered unseen languages as
they are not used in training the generic voices. Since
attention in encoder-decoder architecture is not learnt
effectively on long training utterances, utterances whose
duration is less than or equal to 15 seconds are considered.
The amount of training data used from each dataset is
given in Table I.

B. Text representation

Average voice models are trained in a multilingual con-
text by combining data across languages and training a
single network. Since each language has its own unique
script, the combined vocabulary size becomes large, lead-
ing to poor training of the TTS system. Hence, the texts
in different native scripts are mapped to a common repre-
sentation. The multi-language character map (MLCM) [6]
and the common label set (CLS) representations [6], [7] are
used. Both MLCM and CLS operate on the principle that
acoustically similar subword units across languages are
given a common representation. While MLCM is designed
for character-based representation, CLS is used for phone-
based representation. In the MLCM representation, the
text is first split into its constituent characters and then
mapped to a set of token numbers using MLCM. To obtain
the phone-based CLS representation, the unified parser for
Indian languages [63] is used. An example of the UTF-
8 word in the corresponding language and its character
and phone-based representations is given in Table I. Both
MLCM and CLS aid in training systems with a compact
representation, with 68-72 tokens rather than 250+ tokens

when 4 languages are pooled, or 500+ tokens when 8
languages are pooled.

C. Training E2E systems

Extract
mel-spectrograms
Audio
Text
q Text
Pooling ’—P{representation

Language 1
Language 2

Language N

voices. The grey box corresponds to the adaptation phase.

An illustration of the training process is given in Fig-
ure 1. Data from different languages are combined, and
a single neural network is trained. The training phase
is divided into two parts—(1) text-to-mel spectrogram
mapping based on the Tacotron2 architecture [2]. (2) mel-
spectrogram to speech waveform generation using a Wave-
Glow vocoder [64]. The likelihood P(mel-spectrogram
frames|text) is parameterised using an encoder and a
decoder with attention. The text is processed into a set
of tokens and embedded into a continuous vector. The
embeddings are passed through a series of convolution
layers to capture the long-term context in the input. The
output is then presented to a BLSTM layer to generate
the encoded features. The attention network summarises
the encoded features into a fixed-length context vector.
An auto-regressive decoder predicts the mel-spectrogram
frame at each time step. The WaveGlow vocoder is used
to generate the time-domain speech signal by conditioning
on the mel-spectrogram [64].



D. Adaptation

To improve the synthesis quality of new (unseen) lan-
guages, generic voices are adapted using limited amounts
of accurately transcribed data from the target language.
Specifically, the network parameters of the generic net-
work are fine-tuned on the adaptation data. In [5], different
amounts of adaptation data were considered—30 minutes,
15 minutes and 7 minutes. In the current work, we further
reduce the amount of adaptation data (3 minutes, 1
minute) and test the limits of transferability in extreme
resource-scarce scenarios. The adaptation process is shown
in Figure 1. We also investigate the effect of adapting from
different generic systems—(1) of the same language family,
(2) of a different language family, and (3) combined Indo-
Aryan+Dravidian voice.

V. EXPLORING THE RELEVANCE OF LANGUAGE
FAMILIES FOR SYSTEM BUILDING

This section gives an overview of the language family-
based analysis carried out. Different evaluation metrics are
considered to assess the various systems’ performance.

A. Experiments

TTS systems are built using ESPNet’s implementation
[65] of Tacotron2. Training and validation sets are in the
ratio 9:1. The validation set is a representative mixture of
all the languages considered for training. Different generic
voices are trained for male and female datasets to avoid
the issue of gender in synthesis. The configuration of the
encoder-decoder network used in the experiments is given
in Table II. Nvidia’s WaveGlow implementation is used for
speech reconstruction [64]. WaveGlow models are trained
for Indo-Aryan and Dravidian data by fine-tuning a pre-
trained ljspeech [66] WaveGlow model for 10,000 steps.
Speaker-dependent models are also trained for each target
speaker, but there is no observable difference in synthesis
quality across speaker-independent and speaker-specific
WaveGlow models.

TABLE II: Tacotron2: Network configuration

Name Value
Character embedding dimension 512
Encoder layers 1
Encoder units 512
Decoder layers 2
Decoder units 1024
Attention dimension 128

B. Systems built

Various combinations of voices are trained by consid-
ering the entities mentioned in Table III. To train the
Indo-Aryan (IA) voice, 5 hours each of Bengali, Hindi,
Odia and Rajasthani data are combined. The Dravidian
(Dr) voice is trained using 5 hours each of Kannada,
Malayalam and Telugu data. IA and Dr voices trained
collectively with 20 hours and 15 hours of data, respec-
tively, are called “full” voices. Monolingual voices built

using individual language datasets (5 hours in duration—
Table I) are considered baseline systems. Single-family
voices are also trained with only 5 hours of collective
data, wherein each constituent language has an equal
contribution. This is a data-stressed situation, and these
voices are referred to with a “Shrs” tag. The idea is to
compare the performance of single-family and monolingual
TTS systems trained with the same duration. Further,
Indo-Aryan+Dravidian (IA+Dr) voices are also trained
for comparison. These voices are trained with a total of 35
hours of data. The above systems are also compared based
on their text representation—character-based (MLCM)
and phone-based (CLS). Overall, 16 single language family
voices and 4 TA+Dr combined voices are built, considering
male and female datasets.

These multilingual systems are adapted to unseen (new)
languages. As mentioned in Section IV-D, three types of
adaptation are carried out:

o Same-family adaptation: TA and Dr voices are
adapted to Gujarati and Tamil, respectively, with
varying amounts of data (20 adapted systems in
total).

e Cross-family adaptation: Dr and TA voices are
adapted to Gujarati and Tamil, respectively (4
adapted systems in total).

e Combined TA+Dr voice adaptation: TA+Dr voice is
adapted to Gujarati and Tamil (4 adapted systems in
total).

In addition to the systems mentioned in Table III, the
following systems are also trained:

o Multilingual and adapted systems with x-vectors as
speaker embedding.

o A single IA+Dr voice with x-vector, combining male
and female datasets.

x-vectors are extracted from audio files using a pre-trained
time-delay neural network (TDNN) [8] and then appended
to each encoder state of the Tacotron2 network. Compared
to the systems without speaker embedding, the systems
with speaker embedding have better speaker stability
and improved quality in a few cases. Nevertheless, from
a language family-based perspective, results are similar
with/without speaker embedding. Hence, the results of
these additional systems are presented in the supplemen-
tary material (Sections S1, S2 and S4).

C. Test set and evaluation metrics

Held-out sentences not used for training are considered
for evaluations. This set does not overlap with the data
mentioned in Table I. The test set for each dataset has at
least 100 sentences and covers at least 10 occurrences of
each phone. The length of the test set ranges from 114 to
178 sentences. Table IV summarises the languages and the
number of test sentences considered in each dataset.

The following evaluation metrics are used to analyse the
synthesised audio of different TTS systems:



TABLE III: List of systems trained*

o1 Amount of adaptation
Category Language families Gender Types of TTS systems data (in minutes)
1. Single family (MLCM, full)
Sinele famil Indo-Aryan (IA) Male 2. Single family (CLS, full) B
mngie tamily Dravidian (Dr) Female | 3. Single family (MLCM, 5hrs)
4. Single family (CLS, 5hrs)
. e Male 1. IA+Dr (MLCM)
Combined Indo-Aryan+Dravidian Fomale 2. TA+Dr (CLS) -
. Gujarati (TA) Male Best single family (full) voice from . .
Adapted (same language family) Tamil (Dr) Female the same language family adapted 30,15,7,3,1
. Gujarati (Dr) Male Best single family (full) voice from a
Adapted (cross language family) Tamil (IA) Female different language family adapted 7
. Gujarati (IA+Dr Male . .
Adapted (combined IA+Dr) TarJnil (IA(—',-Dr) ) Female IA+Dr (CLS) combined voice adapted | 7

*Monolingual baseline systems excluded

TABLE IV: Statistics of test set

Dataset Gender (no. of Dataset Gender (no. of
test sentences) test sentences)
Hindi M (169), F (167) | Kannada M (178), F (120)
Odia M (134), F (134) | Malayalam | M (157), F (169)
Rajasthani | M (151), F (149) | Tamil M (120), F (114)
Gujarati M (130), F (140) | - -

1) Mel-cepstral distortion (MCD): MCD is an objective
evaluation metric used to measure the distortion in mel-
cepstral features of synthesised speech compared to that
of the corresponding recorded speech [67]. Dynamic time
warping (DTW) is first performed to align the speech
signals. A lower average MCD indicates that the TTS
system produces less distorted speech.

2) MUSHRA test: MUItiple Stimuli with Hidden Ref-
erence and Anchor (MUSHRA) is a subjective evalua-
tion metric used to assess the perceptual quality of the
synthesised speech [68]. Synthesised utterances (of the
same sentences) generated by various TTS systems are
presented to the listeners on a single panel. For each
panel, the order of systems is randomised. Listeners are
asked to rate the quality of the synthesised speech with
respect to a reference. The scoring is on a scale of 1-100; a
score of “100” indicates that the quality of the synthesised
utterance is the same as that of the reference audio.

3) Additional subjective evaluations: Customised sub-
jective evaluations such as intelligibility tests and language
verification (LVF) tests are conducted. The tests are de-
tailed in the relevant sections.

4) Additional qualitative observations: In addition to
the above formal evaluation methods, informal analysis
is also conducted to verify the observations. This includes
manual verification, informal listening tests, and feedback
on the synthesised audio. Attention plots of the sequence-
to-sequence models are also studied.

D. Analysis

The performance of various voices is analysed using the
metrics mentioned above?. Synthesis using multilingual
voices is divided into two categories—(1) synthesis of
seen languages and (2) synthesis of unseen languages.
Only languages seen during training are synthesised and

4Synthesised samples are available at www.iitm.ac.in/donlab/
preview/TTS language family/index.html

evaluated in the first scenario. In the second scenario, the
text of unseen languages is synthesised. It is to be noted
that generic voices have not been fine-tuned for any in-
training speakers.

1) Analysis of generic systems for seen lan-
guages: MCD scores: Figure 2 shows the MCD scores
corresponding to male TTS systems. The x-axis in the
plot refers to the language of the native text. Each text
is passed through 7 different voices—baseline monolingual
TTS voice of that language, four single-family (IA/Dr)
and two combined TA+Dr systems built using different
text representations.

It is seen from Figure 2 that baseline monolingual
systems perform better than generic systems in most cases.
Considering only single family (full) systems, character-
based representation performs better than phone-based
(CLS) representation for Indo-Aryan languages. The re-
verse is true for Dr (full) voices. The phone-based repre-
sentation performs best for all languages for single-family
(5hrs) systems. The degradation in performance of the
phone-based TA (full) system could be a consequence of
incorrect grapheme-to-phoneme conversion (mainly schwa
deletion), which has become more prominent in the full
voice than in the 5Hhrs voice. There is no significant
difference between the performances of both IA+Dr sys-
tems. Only for Kannada and Malayalam, MCD scores are
better for TA+Dr voices compared to monolingual and
single-family voices. However, this difference is not very
significant, given that IA+Dr voices are trained on a con-
siderable amount of data (35 hours compared to 5/15/20
hours of monolingual or single-family voices). Comparing
MCD scores of monolingual TTS systems (with 5 hours of
training data) and the best single-family (5hrs) systems,
the average relative degradation with respect to the former
is only 3.82%. A similar comparison of the best single-
family (5hrs) system with the best IA+Dr system indicates
an average relative degradation of 3.57% with respect to
the latter. This is an encouraging result, given that the
IA (5hrs) and Dr (5hrs) voices are trained with only 1.25
hours and 1.67 hours of data per language, respectively.

Similar results are observed for systems trained on
female data and systems trained with speaker embedding,
as presented in the supplementary material (Sections S1
and S2). The average relative degradation in MCD score
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Fig. 2: MCD scores of monolingual text of different languages synthesised by various systems built using male data

of the best single-family (5hrs) voice compared to that of
monolingual systems is only 4.5%, and with respect to the
best TA+Dr system is 3.14%.

Subjective intelligibility tests: A subjective word er-
ror rate (WER) test is carried out to measure the intelligi-
bility of each system. This test is performed only for Hindi
and Kannada systems trained using male data. Evaluators
are presented with sentences and corresponding audio files
synthesised by each system. The evaluators were asked to
enter the number of words wrongly pronounced in the syn-
thesised utterances. Although providing the text does bias
the participant, this bias is uniform across all systems. For
the evaluation, synthesised utterances corresponding to 10
randomly selected sentences were considered. Details of
the evaluation and WER across all systems are presented
in Table V. The results are more or less similar to the
patterns observed for MCD scores. Monolingual TTS and
TIA+Dr (MLCM) perform the best for Hindi and Kannada,
respectively. Single-family (MLCM, 5hrs) systems have
the highest WER.

MUSHRA tests: MUSHRA tests are conducted to
assess the quality of synthesised utterances across various
systems. Based on MCD scores and informal listening
tests, IA (MLCM, full) and Dr (CLS, full) voices are the
best single-family voices. IA4+Dr (CLS) combined voice
performs better than TA+Dr (MLCM) voice in most cases.
Hence, MUSHRA tests are conducted for these systems,

along with corresponding single-family voices in data-
stressed situations (IA (MLCM, 5hrs), Dr (CLS, 5hrs)).
Monolingual TTS synthesisers are also included for com-
parison.

Native listeners participated in the evaluations—Hindi
(18), Odia (5), Rajasthani (5), Kannada (11), and Malay-
alam (19). Each listener evaluated a set of 20 audio
files in each test, 5 from each system. Figure 3 presents
the MUSHRA scores for male voices. In most cases, the
synthesis quality of single-family (5hrs) voices is the least,
followed by the IA+Dr voice. The performance of single-
family (full) and monolingual systems is similar in most
cases, except for Hindi and Kannada. For Kannada, mul-
tilingual training (particularly TA+Dr) seems to improve
synthesis quality compared to monolingual training. Simi-
lar results are observed for systems trained on female data,
as presented in the supplementary material (Section S3).
On average, the relative degradation in MUSHRA score of
single-family (5hrs) voices is 12.93% compared to the best
system.

2) Analysis of generic systems for unseen lan-
guages (zero-shot scenario): The scenario of synthe-
sising text from unseen languages (Gujarati and Tamil)
is analysed. Only single-family voices are considered here.
We aim to study the extent to which language families
can affect the synthesis in unseen languages. Two types of
cases are explored:

TABLE V: Subjective intelligibility tests: WER of various systems trained using Hindi and Kannada male datasets

L ‘ﬁ";‘g‘]‘rﬁ‘; HZ} No. of Monoli . 1A/Dr 1A/Dr IA/Dr 1A/Dr IA+Dr | IA4+Dr

anguage sentenc‘; evaluators onolingual | (MICM, full) | (CLS, full) | (MLCM, 5hrs) | (CLS, 5hrs) | (MLCM) | (CLS)
Hindi 7 13 257% 3.58% 6.19% 12.14% 8.98% 1.22% 6.58%
Kannada 2 9 8.67% 9.92% 5.33% 16.67% 7.33% 2.00% 133%
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Fig. 3: MUSHRA scores of monolingual text of different languages synthesised by various systems built using male

data

1) Same language family synthesis—Gujarati and
Tamil texts are synthesised by IA and Dr voices,
respectively.

2) Cross-language family synthesis—Tamil and Gu-
jarati texts are synthesised by TA and Dr voices,
respectively.

TA (MLCM, full) and Dr (CLS, full) TTS systems are
considered as these are the best systems in the respective
language families. The unseen language text is passed
directly to the single-family voice during synthesis. It is
to be noted that although these languages are not used
during training, the CLS and MLCM representations can
handle them.
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Fig. 4: Attention plots corresponding to (a) Gujarati text
synthesised by TA voice (b) Gujarati text synthesised by
Dr voice (c¢) Tamil text synthesised by IA voice (b) Tamil
text synthesised by Dr voice.

Attention plots of IA and Dr male TTS systems for

sample Gujarati and Tamil texts are shown in Figure 4.
The monotonic nature of the plots indicates that the syn-
thesised utterances are reasonably intelligible. However,
informal listening tests present a different story. Both
cases of synthesis have a non-native accent, which is ex-
pected. Same language family synthesis is relatively more
intelligible compared to cross-family synthesis. However,
the accent in cross-language family synthesis is quite pro-
nounced and impedes intelligibility. Clearly, languages are
not only different due to phonotactics but also prosody.
Differences in the phone sets between the unseen language
and the single-family voice further contribute to this
degradation. Evaluating non-native synthesised utterances
is not trivial. We have designed a subjective language
verification (LVF) test to assess both cases of unseen
language synthesis. Details of the LVF test are presented
in Section V-D3 along with a comparison with adapted
systems.

A note on speaker identity and stability: Since
there is only one speaker per language in the training
data, the problem of stability of speaker identity is largely
avoided. To quantify this, a speaker identification (SID)
system is built by combining the training data mentioned
in Table I. The idea is to see to what extent the speaker
identity of synthesised seen language is in the correspond-
ing seen speaker’s voice. On average, this value is 90.5%
and 91.8% for language family-specific and TA+Dr voices,
respectively. It is also observed that speaker similarity
does not necessarily influence speaker identity in synthesis.
Details on this are presented in the supplementary mate-
rial (Section S6). With x-vectors, we can explicitly specify
a voice for synthesis.

For unseen languages, the synthesised speech is in the
voice of a seen speaker, which varies with the test sentence.
As seen in [5], even if we specify the speaker embedding of



the unseen speaker during synthesis, this is not reflected
in the speaker identity of the output audio. It is still in
the voice of a seen speaker.

3) Analysis of adapted systems (same language
family): A TTS system built using only a limited amount
of data (say, 30 minutes) in an unseen language does not
train well. Hence, generic TTS systems are fine-tuned on
this limited data to improve unseen language synthesis.
Adaptation is performed within the same language fam-
ily, and the best single-family systems are considered.
TA (MLCM, full) and Dr (CLS, full) TTS systems are
adapted to Gujarati and Tamil, respectively. We study
adaptation with varying amounts of data—30, 15, 7, 3 and
1 minute. Table III shows the combinations of adapted
systems from the same language family. Adaptation is
performed separately for male and female data. The test
set corresponding to these languages in Table IV is used
for synthesis. For example, in the case of Gujarati female,
we use only 5 utterances (1 minute) for adaptation, but
test the system on 140 sentences.

MCD scores: Figure 5 presents the MCD scores of
different adapted systems. MCD scores are plotted against
the amount of adaptation data used. As the amount of
adaptation data reduces, it is seen that the MCD score in-
creases. The system’s robustness reduces, resulting in high
variance and more edge cases and outliers (as indicated
by the + symbol in the plots). The performance of the
Gujarati male voice drops significantly with 1 minute of
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adaptation data (Figure 5 (a)). The performance degrades
gracefully with reduced adaptation data for the remaining
scenarios.

Language verification (LVF): A novel language ver-
ification subjective evaluation metric is developed, where
subjects are asked to verify the language of the synthesised
output. This is performed only for the unseen languages,
Gujarati and Tamil. Evaluators are presented with a set of
24 audio files randomly ordered—(a) 4 original recordings
of the language, and (b) 5 audio files each synthesised by
TA (MLCM, full), Dr (CLS, full), adapted (1 minute) and
adapted (30 minutes) voices. The adapted models belong
to the same family adaptation. The adapted models are
included to assess to what extent evaluators can verify the
language with 1 minute and 30 minutes of clean data.

Evaluators are asked to rate if the audio clip is of the
unseen language, disregarding any foreign accent. A 5-
point rating scale is used, with the following indications:

e Score 5: sure that the audio clip is of that language.
e Score 3: the audio clip could be of that language.
e Score 1: the audio clip is not at all of that language.

7 and 11 native listeners participated in the Gujarati
and Tamil LVF tests, respectively. Table VI presents the
results of LVF test. It is seen that with cross-family
synthesis, the LVF score is less compared to that of the
same family synthesis. This is especially evident with the
synthesis of Tamil text using IA voice, for which evaluators
have rated that the language is not Tamil. Evaluators have
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Fig. 5: MCD scores of adapted TTS systems with different amounts of adaptation data: (a) Gujarati (male) (b) Gujarati

(female) (c¢) Tamil (male) (d) Tamil (female).



TABLE VI: Results of language verification test com-
paring same-family synthesis, cross-family synthesis and
adapted systems for unseen languages

TTS system Gujarati | Tamil
IA TTS 4.69 1.31
Dr TTS 3.29 3.83
Same family adaptation (1 min) 3.21 4.32
Same family adaptation (30 mins) 4.74 4.75

mostly indicated that the language is Gujarati for Gujarati
text synthesised using the IA voice. With 1 minute of
adaptation data, the LVF score improves over the same
family synthesis for Tamil. However, for Gujarati, the
score degrades considerably. This is because the quality
of the system adapted with 1 minute of Gujarati data
is poor (as seen in Figure 5 (a)), and this impacts its
language verification. For systems trained with 30 minutes
of adaptation data, evaluators are fairly confident that the
language of the text is indeed the same. The evaluations
are conducted for systems built using male data, and
informal evaluations also indicate similar results for female
data. These evaluations indicate the importance of same
language family synthesis, even when no training data is
available for unseen languages.

4) Analysis of adapted systems (all scenarios):
To get a better understanding of how important language
families are in the context of adaptation, different generic
voices are adapted to Tamil and Gujarati as given in Table
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ITI. Three scenarios of adaptation—same language family,
cross-language family and IA+Dr adaptation are explored,
as elaborated in Section V-B. Only 7 minutes of data from
each language is considered for adaptation.

MCD scores: Figure 6 presents the MCD scores of
various adapted TTS voices corresponding to Gujarati and
Tamil male and female datasets. The x-axis indicates the
generic system used for adaptation. It is seen that the
MCD scores are slightly higher in cross-language family
adaptation compared to the same family adaptation. Infor-
mal listening tests indicate that language-specific phones,
especially in Tamil, are not pronounced correctly with
cross-family adaptation. The performance of IA+Dr voice
adaptation and the same family adaptation is almost on
par. The difference in performance of same family and
cross family adaptation is statistically significant (p <
0.05) and that between same family and IA+Dr adapta-
tion is not very significant (p > 0.05). This indicates that
the same language family voice, trained on a small amount
of data, is sufficient for effective adaptation. A combined
TA+Dr voice can also be adapted if substantial data is
available across language families.

In the adaptation experiments presented here, only the
best generic systems are adapted— TA (MLCM, full), Dr
(CLS, full), IA+Dr (CLS). The observations on language
families still hold even when other generic (MLCM/CLS)
models are adapted (Section S4 in the supplementary
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Fig. 6: MCD scores of TTS systems adapted from different generic voices—of the same language family, different
language family and IA+Dr combined voice. (a) Gujarati (male) (b) Gujarati (female) (¢) Tamil (male) (d) Tamil

(female).



material). We see that the better the generic models, the
better the performance of adapted models.

MUSHRA test: A MUSHRA test is conducted to
evaluate the various adapted systems. 8 native Gujarati
and 13 native Tamil speakers participated in the study.
Each listener assessed a set of 21 audio files (7 each from
each system). Results of the MUSHRA test are presented
in Figure 7. It is seen that the synthesis quality of cross
family adaptation is poor compared to that of the other
two adapted voices. The quality of same family adaptation
and combined IA+Dr adaptation is similar in most cases.
For Tamil female, Dravidian voice adaptation is better
than combined IA+Dr adaptation. On closer inspection,
we observe that this lower rating for IA4+Dr adaptation is
mainly due to unnatural pauses in the synthesised audio,
which does not show up in the MCD scores (Figure 6 (d)).

This needs further investigation.
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Fig. 7: MUSHRA scores of monolingual text of Gujarati
and Tamil synthesised by various adapted systems—same
family, cross family and combined TA+4Dr voice adapta-
tions (M- male, F- female)

V1. DISCUSSION

In this work, we train and analyse TTS systems for
Indian languages in a low-resource setting from a language
family perspective. Our observations based on this work
are summarised here:

o Monolingual systems built using 5 hours of studio-
recorded data and accurate transcriptions produce
better quality speech than single-family voices in
most cases. Including data from other languages for
training could introduce ambiguity. However, the
degradation in the quality of single-family systems
is marginal. Both monolingual and single-family sys-
tems are on par in terms of synthesis quality.

o Single-family voices work reasonably well for unseen
languages belonging to the same language family.

o Cross-language family synthesis performs poorly. A
contributing factor is a mismatch between the phone-
sets of a single-family voice and an unseen language of
another language family. The phoneset of an unseen
language is largely covered by other languages in the

11

same language family. The phoneset of Gujarati is
covered in the Indo-Aryan voice, while Tamil has
additional phones such as “e” (short E), “o” (short
O) and “zh” (retroflex continuant), which are not
covered. Table VII provides details of phone cover-
age for each unseen language with respect to single-
family data. Accent is also an important factor that
contributes to poor intelligibility.

TABLE VII: Percentage of unique phones covered by
single-family voices. The number of phones that are not
covered is given in parentheses.

Unseen language IA data Dr data
Gujarati 100% (0) 94% (3)
Tamil 90.48% (4) | 100% (0)

o Single-family voices of reasonable quality can be
trained in data-stressed situations. With an aver-
age duration of 1.5 hours per language (33.33% of
monolingual data) for training, the MCD score of
the single-family (5hrs) voice has an average relative
degradation of only 4.16% in comparison to a mono-
lingual voice built with the same amount of collective
data (i.e., 5 hours). The synthesis quality of these
systems has an average relative degradation of 12.93%
compared to the best TTS system.

e Combined TA+Dr voices, which include languages
from both Indo-Aryan and Dravidian language fam-
ilies, do not give a significant performance boost
compared to systems trained solely from the same
language families.

o Generic voices can be adapted to new languages with
limited data. Adaptation is effective when the generic
voice is trained on languages similar to the new
language. Language families play a vital role here.

e In Tamil, the same character represents both voiced
and unvoiced stop consonants. For example, the bi-
labial unvoiced stop consonant “p” and its voiced
counterpart “b” are represented by a single character.
This distinction is made in the phone-based represen-
tation. Hence, Dravidian (CLS) voice is better suited
for adaptation to Tamil.

o In Malayalam and Tamil, when “u” occurs at the
end of a word, it is not rounded but uttered as
an unrounded back vowel. In most cases of Tamil
synthesis using Dr and IA+Dr voices, the vowel “u”
remains rounded. With more adaptation data, the
network synthesises these Tamil words correctly.

o Generic and adapted systems trained with x-vectors
as speaker embedding have lower MCD scores than
counterparts without speaker embedding (Sections
S1, S2 and S4 of supplementary material). Nonethe-
less, language family-based analysis still holds for
voices with x-vectors.

o Training a single female+male voice with speaker
embedding also does not seem to improve the per-
formance of generic systems (Sections S1 and S2 of
supplementary material).



A. Analysis of phonotactics across languages

To better understand the outcome of the experiments
described above from a theoretical perspective, we analyse
the phonotactics of languages and compare them in a
multilingual setting. As mentioned in Section II, phono-
tactics play a vital role in a language. Here we quantify
phonotactics using two approaches—byte-pair encoding
(BPE) [11] and phone-based language modelling. This is
a text-based analysis. The text is first parsed into its
phone-based representation. Along with the data used
earlier for training and testing, additional text material
is used for this analysis—(a) 150 test sentences in Bengali
and Telugu (b) training text corresponding to a 5-hour
duration in Gujarati and Tamil. Corresponding language
data are combined for Indo-Aryan (IA), Dravidian (Dr)
and IA+4Dr text. Multilingual text data exclude Gujarati
and Tamil, which are still considered unseen languages.

1) Analysis of byte-pair encoding (BPE): BPE is a
technique originally used for data compression [10], and
now adopted for subword tokenization in machine trans-
lation [11] and speech-related tasks [69]. BPE tokens can
represent the most common sub-strings of a language.
These tokens are extracted for every language using their
corresponding training text. We consider the top 500 BPE
tokens. It is to be noted that this analysis does not include
any test data and is performed only on the training text.

TABLE VIII: Same BPE tokens across pairs of text data
(values in %)

Language IA Dr IA+Dr
Bengali 61.0 | 36.0 51.8
Hindi 61.6 31.4 52.2
Odia 54.6 31.2 45.2
Rajasthani 61.2 34.2 55.0
Gujarati (unseen) | 52.4 | 36.6 49.8
Kannada 36.0 | 57.8 48.2
Malayalam 31.6 | 48.8 42.0
Telugu 32.2 | 54.4 45.2
Tamil (unseen) 28.8 | 33.6 35.4

The percentage of the same BPE tokens is calculated
for every combination pair of IA/Dr/IA+Dr data and
individual language data. Table VIII presents the results of
BPE analysis. We see a higher match for languages to their
corresponding language family data compared to the other
language family data. For IA4Dr data, this percentage is
between individual IA and Dr data. Similar results are
also observed for Gujarati, which is not seen in the TA
text. The only exception is Tamil, in which the matching
percentage is slightly improved for IA+Dr data compared
to individual Dr data.

2) Analysis of language models: A phone-level language
model (LM) is trained using the corresponding training
text for each multilingual data (IA/Dr/IA+4Dr). Average
sentence-level log-likelihood scores are calculated on the
test data using these models. Language models are also
trained on monolingual text to understand the maximum
achievable likelihood scores. The models are trained and
tested using the Stanford Research Institute language
modelling (SRILM) toolkit [70] with the maximum order
being 3 (i.e., up to trigrams).
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TABLE IX: Log likelihood scores of test sets using differ-
ent language models (maximum order of n-gram= 3).

Test set/ LM Monolingual IA Dr IA+Dr
Bengali -65.40 -71.31 -112.61 -74.47
Hindi -90.63 -97.54 -159.75 -102.25
Odia -66.76 -70.80 -114.86 -74.67
Rajasthani -103.40 | -107.00 -161.47 -111.19
Gujarati (unseen) -72.60 -90.09 -118.17 -90.87
Kannada -64.62 -124.19 -71.03 -76.79
Malayalam -58.99 -120.68 -64.93 -69.79
Telugu -111.22 -170.39 | -114.68 -120.56
Tamil (unseen) -93.25 -171.02 -135.23 | -125.57

Table IX presents the log-likelihood scores of different
test sets using various models. As expected, the likelihood
scores of purely monolingual models are the best. TA
models have better scores for Indo-Aryan (seen) languages
than Dr models. IA+Dr model has slightly lower likelihood
scores compared to the IA language model. A similar trend
is observed for Dravidian (seen) languages. Even for Gu-
jarati, whose text is not seen in any multilingual language
model, the TA model has the best score among the mul-
tilingual models. For Tamil, the best multilingual model
is TA+Dr. Also, the difference between the likelihood
values of the TA+Dr/Dr model and the monolingual Tamil
model is relatively high, even for unseen languages. This
indicates that the phonotactics of Tamil could perhaps
be quite different compared to other Dravidian languages.
Overall, the above phonotactic analysis provides a basis for
multilingual system training based on language families.

This work shows that language families are important
for system building, especially in resource-scarce scenarios.
A suitable starting point to build a TTS synthesiser for
a new language with limited data would be to use a
generic voice trained for the same language family. This
would ensure that similar phonotactics are largely covered
(Sections II and VI-A), with the added advantage of
reducing the overall training data requirement.

Going ahead, the training data per language can be
further reduced to assess extreme data-stressed situations.
To improve the synthesis quality of seen languages, generic
voices can be further fine-tuned on seen languages, as
explored in [28], [56]. Additional embeddings, such as lan-
guage embeddings, can be included during training. The
code-mixing ability of generic voices can also be explored.
Given data in more Indian languages, the study can be ex-
tended to include more language combinations. Even with
recent approaches using transformer [71] and conformer
[72] networks with FastSpeech [73] and FastSpeech2 [74],
these findings are still relevant. Experiments and results
of zero-shot synthesis with transformer-based FastSpeech2
architecture are presented in Section S7 of the supplemen-
tary material. Since FastSpeech2 uses explicit phoneme
boundaries obtained from Montreal forced aligner [75],
systems are trained using phone-based representations.

VII. CONCLUSION

This work highlights the importance of training mul-
tilingual and multispeaker voices for low-resource Indian
languages based on language families. It is observed that



single-family voices, which are trained on less data, per-
form comparatively to IA+Dr systems trained on a lot of
data. Same language family synthesis and adaptation are
better than the cross-family approach. The observations
of this work are encouraging as they pave the way to
training TTS systems in resource-scarce scenarios, with
additional complexities of different scripts and language-
specific differences.

Given a large number of speakers in each language,
with many that cannot read or write in India®, this
work provides an avenue to disseminate knowledge and
information. Hence, the relevance of this work and similar
attempts cannot be underestimated.
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