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ABSTRACT

End-to-end (E2E) systems synthesise high-quality speech, but
this typically requires a large amount of data. As E2E syn-
thesis progressed from Tacotron to FastSpeech2, it became
evident that features representing prosody, particularly sub-
word durations, are important for error-free synthesis. Vari-
ants of FastSpeech use a teacher model or forced alignments
for training. This paper uses signal processing cues in tandem
with forced alignment to produce accurate phone boundaries
for the training data. As a result of better duration modelling,
good-quality synthesisers are developed. Evaluations indicate
that systems developed using the proposed signal processing-
aided approach are better than systems developed using other
alignment approaches, especially in low-resource scenarios.
Our systems also outperform the existing best TTS systems
available for 13 Indian languages.

Index Terms— end-to-end speech synthesis, Indian lan-
guages, accurate alignments, signal processing cues, Fast-
Speech2

1. INTRODUCTION

India has a wide linguistic diversity with 1369 languages, in-
cluding 23 official languages [1]. Of its one billion+ popula-
tion, only 74.04% is literate. Poor literacy levels and limited
or no proficiency in English underscore the development of
good-quality Indic speech synthesis systems to better engage
the general public. This task is challenging given that most
Indian languages have limited or no resource availability. In
this work, we develop good quality end-to-end (E2E) text-to-
speech (TTS) systems for Indian languages by seamlessly in-
tegrating signal processing cues in deep learning techniques.
Specifically, the focus is on improving the duration prediction
(and thereby the synthesis quality) of the E2E TTS systems by
correcting the phone alignments of the training data.

The E2E approach is the popular state-of-the-art speech
synthesis paradigm due to its ease in training systems to
obtain high-quality speech. The initial E2E systems were
primarily attention-based, such as Tacotron [2], Tacotron2
[3]. The main goal of the attention module in TTS tasks
is to learn the alignments between characters/phones and
mel-spectrogram frames. The attention module learns soft
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alignments, in comparison to hard alignments used in tradi-
tional TTS approaches such as unit selection synthesis (USS)
[4] and hidden Markov model (HMM) based speech synthesis
systems (HTS) [5]. The attention network is trained to enable
duration prediction during synthesis.

One of the main drawbacks of attention-based networks is
that the alignments may not be learnt correctly. Coupled with
an auto-regressive decoder, the synthesised output is prone to
errors, such as the insertion or deletion of phones. Hence, the
focus of the E2E paradigm has shifted to improving duration
prediction during synthesis. The duration information corre-
sponding to the training data can be learnt in different ways.
FastSpeech [6] uses alignments predicted by a teacher model.
Some architectures, such as FastSpeech2 [7] and DurlAN [8],
employ external aligners for this purpose. Other recent works,
such as [9, 10, 11, 12, 13, 14] learn the alignments internally.

In the context of HMM-based systems, [15, 16] have stud-
ied the effect of accurate alignments on synthesis quality and
intelligibility, highlighting the importance of accurate bound-
aries for training. Current E2E TTS architectures employ
machine learning based alignments for system building. Sig-
nal processing primarily depends on the acoustic characteris-
tics of the speech signal and is agnostic to the transcriptions.
Does combining their complementary features also help in
E2E training, as already evidenced in the HTS and conven-
tional neural network-based frameworks? Such a study is
very important to produce good quality speech as duration
is a vital prosody marker. We employ an external aligner, the
hybrid segmentation (HS) algorithm, which combines signal
processing cues in tandem with deep learning techniques [16],
to obtain accurate alignments for the training data. We use the
FastSpeech?2 architecture [7], and the HiFi-GAN v1 vocoder
[17] for E2E training'.

The E2E system trained using the signal processing aided
hybrid segmentation approach is referred to as the proposed
system. The performance of the proposed system is compared
with systems trained with different alignment techniques— us-
ing a teacher model and Montreal forced aligner (MFA) [18].
We also conduct experiments in a low-resource scenario, in-
cluding a comparison with a direct text-to-wave VITS model
[14]. Formal evaluations and qualitative observations indi-

UIn this paper, the two-stage pipeline of generating mel-spectrograms and
then reconstructing waveforms is also considered as E2E training.



cate that the signal-processing aided system is comparable to
or better than systems trained with purely machine learning-
based alignments.

We also investigate how these trained systems compare
with state-of-the-art TTS systems available for 13 Indian lan-
guages [19] and evaluate system performance using subjec-
tive measures. This in itself is quite a challenge, as getting
native listeners for each language is difficult. Most studies
focus only on a few major languages and have many evalu-
ators. In this work, we have tried our best to get as many
evaluators as possible in each of the 13 languages. Subjective
evaluations indicate an average preference of 62.63% for the
proposed systems over the systems of [19].

The rest of the paper is organised as follows. Section 2
reviews the related work. The baseline and proposed systems
are presented in Section 3. Associated experiments are de-
scribed in Section 4. The work is concluded in Section 5.

2. RELATED WORK

This section presents recent literature focusing on duration
modelling in E2E training. In FastSpeech [6], duration in-
formation is obtained from a Transformer TTS [20], which
is considered a teacher model. External aligners are used in
a few papers— MFA [7, 18], HMM-based [21], and connec-
tionist temporal classification (CTC) based [22]. TTS sys-
tems trained in [9, 11, 12, 23, 24] learn duration informa-
tion internally using HMM-based approaches. Soft and hard
alignments are learnt with monotonicity constraint in [9, 11,
12]. Glow-TTS [13] uses normalizing flows and dynamic pro-
gramming to determine the most probable monotonic align-
ments between text and the latent audio representation. Vari-
ational autoencoder with adversarial learning text-to-speech
system (VITS) [14] also uses the monotonic alignment search
(MAS) proposed in [13]. In [25], word-level hard alignments
are obtained from an external aligner, and soft phone align-
ments are learnt using a word-to-phone attention network. A
recently developed network called SoftSpeech [26] proposes
a soft length regulator for unsupervised duration modelling
within the FastSpeech2 network. Among the presented litera-
ture, [24, 26] demonstrate the capability of their TTS systems
in low resource scenarios.

HMM-based alignments and MAS are both statistical-
based approaches. In [27], it is seen that forced alignment
using HMMs does not always provide accurate alignments,
especially for fricatives, affricates and nasals. The boundaries
of these classes of sounds are refined using signal processing
cues. Hence, in the current work, we use the hybrid segmen-
tation algorithm [16] to obtain accurate phone boundaries
for the training data. Hybrid segmentation is an external
aligner that combines the complementary features of signal
processing and neural network-based techniques.

A recently published paper [19] has built good quality
TTS systems for 13 Indian languages by exploring different

state-of-the-art models employing different alignment tech-
niques. This includes MAS in Glow-TTS [13] and VITS [14],
and the alignment learning framework in [9, 11]. Evaluations
show that the 2-stage pipeline (FastPitch [28] + HiFiGAN
[17]) performs better than the direct end-to-end VITS model
in terms of intelligibility. In the current work, we choose
the FastSpeech2 network as the mel-spectrogram generation
model as it provides more variance information with pitch and
energy. On average, our proposed systems perform better than
the best systems of [19].

A recent work [29] shows that small alignment errors (less
than 75 msec) do not impact synthesis quality. But our ex-
perience with alignments and studies in [7] show that better
alignments lead to better synthesis output.

3. BASELINE AND PROPOSED SYSTEMS

We present the baseline systems used in this work and de-
scribe in detail the hybrid HMM-GD-DNN segmentation
(HS) approach, the alignment technique which we propose to
be used for FastSpeech2. Then we briefly describe the E2E
pipeline used.

3.1. Baseline systems

We consider the following baseline systems employing differ-
ent alignment techniques:

1. FastSpeech2 with teacher-student approach (TS): In
the teacher-student approach, phone durations from
an auto-regressive Tacotron2 teacher model (or Trans-
former network) are fed to FastSpeech2 model training.
From a trained teacher model, encoder-decoder atten-
tion alignments are extracted for every <text, audio>
pair as described in [6].

2. FastSpeech2 with Montreal forced aligner (MFA) [18]:
MFA is an open-source speech-text aligner that pro-
vides phone and word level boundaries. MFA performs
triphone modelling and performs speaker adaptation to
model inter-speaker differences. Models are trained in
MFA using the Kaldi speech recognition toolkit [30].

3. VITS with monotonic alignment search (MAS): VITS
is a direct E2E architecture [14] that uses a variational
autoencoder to generate speech from text. VITS learns
the phone alignments internally from the data using
the monotonic alignment search (MAS) of Glow TTS
[13]. MAS is a dynamic programming based approach
to finding the optimal alignment between a speech
waveform and its corresponding transcriptions. The
alignments are restricted to non-skipping and mono-
tonic. Training a VITS model is computationally in-
tensive and requires a longer training time. Hence, a
VITS model has been trained only in the low-resource
scenario for performance comparison.



3.1.1. Hybrid HMM-GD-DNN segmentation (HS)

Hybrid segmentation is an alignment technique that combines
the complementary features of machine learning and sig-
nal processing-based approaches to generate accurate phone
boundaries [15, 16]. HMM-based forced alignment does not
accurately model the location of phone boundaries. Hence, in
[15], these boundaries are corrected using signal processing-
based cues. Specifically, a group delay (GD) based algorithm
is used to obtain accurate syllable boundaries. However, the
drawback of the GD-based technique is that it doesn’t capture
the correct number of syllable boundaries as it is agnostic
to the text. Hence, spurious GD boundaries are estimated,
and the GD boundary closest to an HMM boundary is con-
sidered the correct syllable boundary [15]. Then the phone
boundaries are re-estimated within these syllable boundaries
instead of re-estimating across the entire utterance.

Additionally, sub-band spectral flux (SBSF) is used as
a cue for correcting boundaries of fricatives, affricates and
nasals [27]. The boundaries of these sounds are characterised
by significant spectral changes. Affricates and sibilant frica-
tives have high energy content in the higher frequency bands,
while the energy content of nasals is more prominent in the
lower frequency bands.

In [16], the accuracy of phone boundaries and the syn-
thesis quality is compared across TTS systems trained with
only deep neural network (DNN) alignments and with DNN
alignments employing boundary correction. In the latter, the
alignments obtained by the hybrid HMM-GD technique are
considered initial alignments for DNN segmentation. Exper-
iments show that the synthesis quality with boundary correc-
tion is better than with only DNN alignments. Motivated by
this, we use the hybrid HMM-GD-DNN alignments for Fast-
Speech? training and compare systems trained with the other
machine learning based alignments discussed previously.
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Fig. 1. An example of a Hindi waveform (bottom panel), its
spectrogram (fourth panel), and phone-level alignments ob-
tained from different techniques (top 3 panels). TS: teacher-
student approach, MFA: Montreal forced aligner, HS: hybrid
segmentation. The highlighted regions indicate the align-
ments in MFA and the correct alignments obtained using HS.

Figure 1 shows a sample Hindi waveform, its spectro-
gram and phone-level alignments obtained from different

techniques. It is clearly seen that the alignments of TS are
not correct. Although MFA has better alignments, the bound-
aries are more refined with HS. While HTS, DNN and E2E
speech synthesis systems primarily learn the average statisti-
cal properties of phones, signal processing techniques rely on
the acoustic properties of speech signals and do not require
training. The acoustic features of syllables, such as the rising,
steady state, and falling transitions, are well-known proper-
ties of syllables in speech. Restricting alignments to syllables
yields accurate consonant boundaries too.

3.2. Text processing

We convert the text to its phone-based representation using
the unified parser for Indian languages [31]. The unified
parser takes a word as input and applies relevant language-
specific rules to generate the phone-based output in the com-
mon label set (CLS) representation [32]. This output is fur-
ther processed such that each phone is represented by a single
character, as described in [33]. Based on the duration infor-
mation, each phone in the text is assigned a value equal to the
number of frames. A comma is included in the text wherever
the aligner has predicted a short pause (sp). Additional sym-
bols “$” and period “.” are included for beginning and end
silence regions (SIL) in the audio (if present), respectively.

3.3. E2E training

The E2E system considered in this work has a 2-stage
pipeline: (1) text to mel-spectrogram conversion using a
Transformer-based encoder-decoder FastSpeech2 architec-
ture [7], and (2) speech reconstruction using the HiFi-GAN
vocoder [17].

In FastSpeech2, the text is converted to phone embed-
dings which are then passed through a series of feed-forward
Transformer (FFT) blocks to generate the phone hidden se-
quence. The phone hidden sequence is then expanded to
match the length of the mel-spectrogram sequence based on
the duration information. Then the expanded phone sequence
is passed through another set of FFT blocks at the decoder
to generate mel-spectrogram frames. Pitch and energy em-
beddings are added to the phone hidden state to provide more
variance information. During training, the phone durations
are obtained from a teacher model (such as Tacotron2) or
an external aligner. Pitch and energy values are extracted
from the ground-truth audio files. Duration, pitch and energy
predictors are trained and optimized with mean square error
(MSE) loss. During synthesis, these prosodic features are
predicted by the network.

HiFi-GAN is a GAN-based vocoder capable of produc-
ing high-fidelity speech from mel-spectrograms [17]. It is a
non-autoregressive vocoder that models periodic patterns in
speech audio. HiFi-GAN has a smaller footprint size and a
higher synthesis speed compared to most neural vocoders.



4. EXPERIMENTS AND RESULTS

Systems are trained for 13 Indian languages from the open-
source Indic TTS database [34]>. The languages are As-
samese, Bengali, Bodo, Gujarati, Hindi, Kannada, Malay-
alam, Manipuri, Marathi, Odia, Rajasthani, Tamil and Telugu.
These languages span eight written scripts and three different
language families— Indo-Aryan, Dravidian and Sino-Tibetian.
Separate systems are trained for male and female voices, ex-
cept for Bodo, which has only a female dataset. Each dataset
consists of about 10 hours of data spoken by a single person.
A total of 25 TTS systems are trained using the proposed
approach.

Audio files are downsampled to 22.05 kHz to ensure uni-
formity in the feature extraction part. The text is processed as
described in Section 3.2. 10% of the TTS data is considered
the validation set. For training Tacotron2 and FastSpeech2
models, the ESPNet (v2) toolkit was used [35], with the de-
fault parameters. HiFi-GAN vl models were trained using
an open-source code®. The hybrid segmentation code*, im-
plemented using HTK [36] and Kaldi [30] toolkits, was used.
Training time for FastSpeech2 was 1.5-2 days for each dataset
on 2 NVIDIA A100 40GB GPUs.

We first perform all experiments with the Hindi male
dataset as proof of concept. The evaluation includes subjec-
tive and objective measures, alignment accuracy and spec-
trogram analysis. Based on these results, we then present
comparative results of the proposed approach for all lan-
guages with respect to the best systems in [19].

4.1. Comparison with different alignment techniques
(full data)

For the Hindi male dataset, three systems are trained (with
full data) based on the alignments used— (1) from Tacotron2
as the teacher model (TS), (2) with MFA, and (3) using hy-
brid HMM-GD-DNN alignments (HS). We first calculate
mel-cepstral distortion (MCD) scores [37], which is an objec-
tive measure. MCD gives a measure of the cepstral distortion
of a synthesised utterance with respect to a reference. For
this, 50 additional ground-truth audio files recorded by the
same Hindi male speaker are used. MCD scores correspond-
ing to different systems are given in Table 1. It is seen that the
performance of all three systems is comparable, and the dif-
ferences in scores are statistically not significant (p > 0.05).

Table 1. MCD scores corresponding to Hindi male systems
with full data

Systems TS | MFA | HS
MCD score | 6.56 | 6.61 | 6.58

Since humans are the end-users of this technology, we

’https://www.iitm.ac.in/donlab/tts/database.php
3https://github.com/jik876/hifi-gan
4www.iitm.ac.in/donlab/tts/hybridSeg.php

also conduct a modified pairwise comparison (PC) test to as-
sess the comparative system performance. In the PC test, lis-
teners are presented with a pair of audio files in random order
of systems, and asked to give their preference. In addition,
evaluators also rate the quality of the synthesised utterances
on a scale of 1-5, 5 being the best. This is similar to the mean
opinion score (MOS), except that the evaluators listen to each
audio pair and then rate each utterance corresponding to a
system. We refer to this score as comparative MOS.

The test sentences for the subjective evaluation were se-
lected from the web, ensuring coverage of different domains—
news, sports, entertainment, and technical lectures. In our ex-
perience, conducting long subjective evaluations leads to lis-
tener fatigue. Hence, each listener evaluated 10 audio pairs
among the 20 audio pairs in the test. 14 native Hindi listeners
participated in each PC test.

Table 2. PC test results: Hindi male systems with full data—
preference in % (comparative MOS)

System pairs TS/MFA HS Equal
TS vs. HS 10.99 (3.81) | 51.65 (4.13) | 37.36
MFA vs. HS 7.69 (3.24) | 61.54 (4.10) | 30.77

Results of the PC test comparing TS vs. HS and MFA vs.
HS systems with full data are presented in Table 2. On av-
erage, the system with HS is preferred in more than 56% of
the cases, with an equal preference of 34% across the com-
peting systems. The difference in performance between the
baseline and proposed systems is extremely statistically sig-
nificant (p < 0.05). Surprisingly, the synthesised output us-
ing the TS model is still good, despite the poor alignments
shown in Figure 1. On further investigation, we find that the
mistakes in alignments follow consistent patterns across vari-
ous audio files and hypothesise that the duration prediction is
accordingly learnt given enough training data.

4.2. Comparison with different alignment techniques
(low-resource scenario)

In the low-resource scenario, only 1 hour of TTS data is
considered for obtaining alignments and training. Here, four
systems are trained with 1 hour of Hindi male data— (1)
FastSpeech2 with alignments from Tacotron2 as the teacher
model (TS), (2) FastSpeech2 with MFA, (3) FastSpeech2
with hybrid HMM-GD-DNN alignments (HS), and (4) VITS
model with alignments from MAS. MCD scores correspond-
ing to these systems are presented in Table 3. The Fast-
Speech2 system with TS does not train well as the training
of the Tacotron2 (1 hour) teacher model failed due to lack
of adequate data. This is reflected in its high MCD score.
The cepstral distortion across MFA and HS systems is simi-
lar. The MCD score of the VITS model is the least. This is
contrary to our expectation as the VITS model makes very
obvious perceptual mistakes (such as confusing the “h” and
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a” sounds in many instances). We hypothesise that the lower
MCD score of VITS may be due to its “cleaner” synthesised
audio as a result of complete text-to-wav training, compared
to slightly more “noisy” audio synthesised by the 2-stage E2E
pipeline.

Table 3. MCD scores corresponding to Hindi male systems
with 1 hour data

Systems TS
MCD score | 10.97

MFA | HS | VITS
7.30 | 7.21 6.95

The modified PC test is also conducted in the low-
resource scenario. The TS system is excluded from this
test due to its poorly synthesised audio. Each listener evalu-
ated a set of 10 audio pairs out of 20 audio pairs in the test.
14 and 13 native listeners participated in the MFA vs. HS
and VITS vs. HS tests, respectively. Results of the PC tests
are presented in Table 4. In the MFA vs. HS test, although
the preference for the HS system in the low resource scenario
has reduced (in comparison to that in full data), the system
still outperforms the MFA (1 hour) model. The HS system
also outperforms the VITS model in the VITS vs. HS test.
The difference in performance of systems is statistically sig-
nificant (p < 0.05). The performance of the VITS model
with a lower MCD score and lower subjective preference is
consistent with the observations in [19].

Table 4. PC test results: Hindi male systems with 1 hour
data— preference in % (comparative MOS)

System pairs | MFA/VITS HS Equal
MFA vs. HS | 16.48 (3.47) | 36.26 (3.84) | 47.25
VITS vs. HS | 13.08 (2.88) | 60.77 (3.68) | 26.15
4.3. Alignment accuracy
Table 5. Alignment accuracy
Alignment technique MFA | HS
Duration difference (inms) | 11.88 | 4.40

Across experiments on both full and 1-hour data, we see
that the MFA system is the closest common competing system
to the proposed system (from both objective and subjective
measures). Hence, we perform further comparative analysis
across these systems. To check the accuracy of alignments ob-
tained using MFA and HS alignment techniques on full data,
we manually align 10 randomly chosen ground truth utter-
ances of the Hindi male training data at the phone level. The
average of absolute boundary differences with different align-
ments (of full data) is given in Table 5. It is clearly seen that
HS provides more accurate alignments compared to MFA.

4.4. Spectrogram analysis

Figures 2 and 3 show spectrograms of utterances synthesised
by the MFA and HS systems. Consider the highlighted re-
gions in Figure 2. The HS system correctly generates audio
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Fig. 2. Spectrograms of synthesised utterances of Hindi male
systems (with full data) using MFA (top) and HS (bottom)
corresponding to the text “eek acchaa tariikaa”.
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Fig. 3. Spectrograms of synthesised utterances of Hindi male
systems (with 1 hour data) using MFA (top) and HS (bottom)
corresponding to the text “sahi dxhang”.

corresponding to the text “eek acchaa tariikaa”. However, the
MFA system misses a few sounds, and the utterance is per-
ceived as “eek chariikaa”. The short vowel “a” at the begin-
ning of “acchaa” is hardly perceived (probably due to hav-
ing a short duration), and the voiceless stop consonant “t”
in “tariikaa” appears to be replaced by the aspirated affricate
“ch”. In Figure 3, the aspirated voiced stop consonant “dxh”
in “dxhang” is missed by the MFA system, while it is uttered
correctly by the HS system (as evidenced by the voice bar).
Our observations from the experiments conducted so
far are summarised here. Although the alignments from
the teacher model are poor (but mostly consistent) in many
places, the FastSpeech2 student model still learns to gener-
ate good-quality speech, given enough amount of training



Table 6. Comparison of proposed systems and existing best systems for various Indian languages: Preference in % (comparative
MOS). The number of evaluators for each language is indicated next to the language.

Language Male voice Female voice

Proposed Existing [19] Equal Proposed Existing [19] Equal
Assamese (9)* 3472 (3.15)  20.83(2.95) 4445 | 69.44 (3.72) 8.33 (2.69) 22.23
Bengali (16) 71.09 (3.92)  10.94 (3.08) 17.97 | 72.66 (4.14) 12.50 (3.23) 14.84
Bodo (16) - - - 58.93 (3.93) 19.64 (3.19) 21.43
Gujarati (13) 45.19 (3.75)  37.50 (3.54) 17.31 | 80.77 (4.17) 7.69 (3.20) 11.54
Hindi (28) 57.14 (3.91)  28.12 (3.56) 14.74 | 69.64 (4.26) 9.38 (3.57) 20.98
Kannada (11) 70.45 (4.17) 12.50 (3.22) 17.05 | 48.86 (4.20) 11.36 (3.69) 39.78
Malayalam (20) | 64.38 (4.04) 14.38 (3.26) 21.24 | 43.753.79)  32.50 (3.65) 23.75
Manipuri (6)* 52.08 (2.83)  31.25(2.51) 16.67 | 37.50 (2.68)  41.67 (2.72) 20.83
Marathi (21) 7798 4.21)  11.31(3.16) 10.71 | 76.78 (4.02) 14.88 (3.16) 8.34
Odia (8)* 68.75 (3.55)  25.00 (2.86) 6.25 59.38 (3.19)  29.69 (2.90) 10.93
Rajasthani (2)* 56.25(3.84)  12.50(3.53) 31.25 | 93.75 (4.47) 0(3.78) 6.25
Tamil (22) 68.18 (4.16)  21.02(3.54) 10.80 | 55.11(3.95) 28.41(3.61) 16.48
Telugu (15) 51.67 (3.87)  29.17 (3.47) 19.16 | 84.17 (3.73) 8.33 (2.69) 7.50
Average 59.82(3.78)  21.21(3.22) 18.97 | 65.44 (3.86) 17.26 (3.24) 17.30

*Results are indicative and not conclusive due to the lack of evaluators.

data. But more accurate alignments are required to further
improve the pronunciation of sounds in the generated output,
especially in low-resource scenarios. In this context, signal
processing cues, such as GD and SBSF, in tandem with deep
learning techniques, aid in providing accurate alignments. It
is to be noted that the accuracy of alignments also depends
on the accuracy of transcriptions in correspondence with the
training utterances and the accuracy of the word-to-phone
lexicon.

4.5. Comparison with existing best models for Indian lan-
guages

Encouraged by the results of the experiments conducted,
FastSpeech2 based systems with the hybrid HMM-GD-DNN
alignments are trained for 13 Indian languages, with male
and female voices. These systems are compared with the ex-
isting best TTS models available for Indian languages [19]°.
It is to be noted that both sets of systems are trained on the
IndicTTS database [34]. The test sentences are selected from
the web, covering various domains— news, sports, entertain-
ment, and technical lectures. However, for Bodo, Manipuri
and Rajasthani, sentences from the eval set (not seen dur-
ing training) have been considered, as it was difficult to find
out-domain sentences in those languages.

The modified PC test is conducted to evaluate the com-
parative performance of these systems. Totally, 187 listeners
participated in the evaluations. The number of native speak-
ers for each language is given in Table 6. Rajasthani systems
were evaluated by only 2 listeners, as it was very difficult to
find native speakers of that language. Results of languages
with less than 10 evaluators have been mentioned as indica-
tive rather than conclusive (denoted by a *). Each evaluator
evaluated 8 audio pairs each for male and female TTS system
comparisons.

Shttps://models.aidbharat.org/#/tts

It is clearly seen from Table 6 that the proposed systems
perform better than the systems in [19] in all cases, except
Manipuri female, where the degradation is marginal. The dif-
ference in performance of 18 models out of 25 is extremely
statistically significant (p < 0.05). For the following sys-
tems, the difference in scores is not statistically significant:
Assamese (male), Gujarati (male), Malayalam (female), Ma-
nipuri (male, female), Odia (female), Rajasthani (male).

As seen in Table 6, the performance of systems across
languages varies. The TTS synthesis quality is limited by
the quality of the TTS data used for training. Factors such
as voice timbre, syllable rate, speaking speed, enunciation,
phone coverage and completeness of the text, accuracy of
transcriptions impact the output synthesis quality. As a re-
sult, systems corresponding to some of the languages perform

better than others.
5. CONCLUSION

In this work, we have built good quality TTS systems for 13
Indian languages by seamlessly integrating signal processing
cues in E2E system building. We have seen how accurate
phone boundaries for the training data have led to better du-
ration modelling, and consequently to better synthesis. We
can further reduce the amount of data (to 30 minutes, 15 min-
utes and so on) to stress test the systems trained with differ-
ent alignments. This work can be further extended to other
prosodic parameters, namely, stress and pitch. Similar ideas
can be explored in the context of other direct text-to-speech
E2E systems, as signal processing primarily depends on the
acoustic characteristics of the speech signal, is agnostic to
text, and is complementary to the model used.
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